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Finite field multiplication is central to coding theory [ 1]. For this application, there
is a need for a multiplication algorithm which can be realized easily on VLSI chips. In this
article, a new algorithm is developed which is based on the Babylonian multiplication
technique utilizing tables of squares. This new algorithm is applied to the finite fields
GF(q™), where q = 3 and 5. It Is also shown that this new multiplier can be used to com-
pute complex multiplications defined on the direct sum of two identical copies of such

Galois fields.

|. Introduction

Let GF(g™) be a finite field. Also. let a be a primitive ele-
ment in GF(g™). Then, N = {&°, &', & -- -, ™~} is the
standard basis set of the field GF(g™), and every fixed ele-
ment of € GF(g™) can be uniquely expressed as o/ = bya® +
ba' +---+b, oMl where by e GF(g) foro<j<m -1
is an element in the ground field GF(q). Thus, o/ can be repre-
sented as a coordinate vector of form a/ = b by -+ by, ]
in the standard basis.

The most straightforward method to perform a multiplica-
tion of two field elements in GF(g”) is the table lookup
method. To illustrate this procedure, let § = [bgy, b, - - -,
by_y] and ¥ = [cg, ¢;, - - ,Cm—;] be two elements of the
field GF(g™) in a standard basis representation. Further, let a
“log” table be used to find the exponents i and j of 8 = af

and v = of. This is accomplished by using elements $ and v as
addresses to locate the logarithms / and j of § and 7, respec-
tively. After the addition k =i + j mod (g™ - 1) of these
exponents, an “antilog” table is used to find the coordinate
vector representation for ¥ in a standard basis. The element k
serves as the address of the field element in the antilog table.

It is reported [2, page 71] that the Babylonians and Egyp-
tians were the first to use tables of squares to efficiently real-
ize a multiplication over the field of integers. In this article, it
is shown that such an algorithm can be used to realize a multi-
plication over the finite fields, GF(3™) or GF(5™). The opera-
tions needed to realize this multiplier are only two squares and
three additions of elements in GF(g") where g = 3 and 5. The
square of any element in the field can be obtained by the table
lookup method. The advantage of this new multiplier is that
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it does not need the antilog procedure required in the conven-
tional table lookup method. Also in this new method, the anti-
log procedure in the conventional method is replaced by three
additions in GF(g™).

It is well known [3] that a conventional coding system
depends crucially on the fast multiplier in the finite fields.
GF(g™). Therefore, the fast multiplication over GF(g™) for
q = 3 and 5 can be used for deep space communications in a
concatenated coding system. In a coding system, the input
sequence is a string of binary digits. In order to use multipli-
cation over GF(q™) where g = 3 and 5, one first needs to con-
vert an input binary sequence to a trinary or quinary sequence,
and inversely to reconvert the output trinary or quinary
sequence back to a binary sequence. Methods for realizing
these radix conversions are given in [4, page 302].

It is shown next that the above new multiplier can be used
to perform complex multiplications defined on both the
extension field GF(3%™) or on the direct sum of two copies
of finite fields GF(g™), where g = 3, and 5. The complex
multiplication defined on a direct sum can be performed by
an efficient method as described in this article.

Il. Mathematical Preliminary

Before developing the Babylonian multiplication algorithm
over the field GF(q™), we consider some properties of finite
fields that are helpful to the following development. First
consider GF(q™) for g # 2. Also let y =a’ # 0 for 0 </ <
q™ - 1 be an element in GF(g™), where « is a primitive
element in GF(g™).

Definition: If the polynomial x2 -y = 0 is solvable in GF(g™),

then v is called a quadratic residue in GF(g"™); otherwise v is
known as a quadratic nonresidue in GF(g™).

Fory #0, let

(lm)= v 2 M

It is seen in the next theorem that the symbol (y/g™) is a
generalization of the Jacobi symbol to Galois fields [9].
First it is not difficult to see that (y(@™-1/2) = 1. Thus,
from (1), (y/g™) = %1, where “1” is the unit element of
GF(g™). A more specific result is provided in the follow-
ing theorem:

Theorem 1: Let g > 2. If (y/q"*) = 1, then v is a quadratic

residue in GF(g™). If (y/q™) = -1, then v is a nonresidue in
GF(q™).
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Proof: See [5].
The following theorem is to be found in [5].
Theorem 2: Let GF(g™) be a finite field where ¢ > 2. Then

am-1 1,forg=1mod 4

(;1) N T
qm

Proof: See Appendix.

1, forg =3 mod 4 and m =0 mod 2
1,forg=3mod 4and m=1 mod 2

(2)

The following theorem is well known and a proof can be
found in [5].

Theorem 3: Let GF(¢™) be a finite field, where gm -1 =
al 452 - q”, (q;, g;) =1, for i # j. Then « is a primitive
element in GF(g™) if and only if «(@" "D/ # | mod g for
l<i<r

lil. Multiplication Over GF(q™)
whereq =3 and 5

In this section, a fast method is developed to perform a
multiplication on GF(q™) where ¢ = 3 and 5 which uses
tables of square roots. This new technique, called the Babylo-
nian multiplication algorithm over the field GF(g’™) for two
elements 8 and v is obtained as follows:

m-—1 i 2 2
§ =By = Z d of =6+ 1(6'7) modq (3)
i=0

For g = 3, (3) becomes

8=[B+7)?2+@-v)?] mod3 (4a)

For g =5, (3) becomes
=-[B+7°+(B-71?] mods (4b)

It is easy to see that the operations needed to compute (4a)
or (4b) require only two squares and three additions of ele-
ments in the field. The square of any element needed in (4a)
and (4b) is found by the table lookup method.

IV. Complex Multiplication Over the Finite
Field GF(3?"), where m is odd

Consider ¢ = 3 and m is odd, ie., m = 2n + 1. By Theo-
rem 2, the negative unit element -1 is a quadratic nonresidue



in GF(3™M), where m = 2n + 1. Thus, the polynomial p(x) =
x? + 1 is irreducible in GF(3™) for m = 1 mod 2. Hence a
Toot, say 7, of the quadratic polynomial equation,

p(x)=x2+1 =0 (5)

exists and can be found in the extension field GF(327),
GF(3?™) is composed of the set GF(32") = {a + ib | a,
b € GF(3™)}where i is a root of (5), satisfying

i2=-1mod3 (6)

By the above, in order that x2 + 1 = 0 not be solvable in
GF(3™), it is necessary that m = 2n + 1. Thus, in GF(32™),
the “imaginary” element i in (5) plays a similar role over the
finite field GF(3™) that /=1 = i plays over the field of ratio-
nal numbers. For example, suppose @ + ib and ¢ + id are ele-
ments of GF((3™)?) where m = 1 mod 2. Then, by (5),

(@a+ib)+(ctid) = (a+c)+i(bt+d) (7)
and

(@+ib)(c+id) = (ac - bd) +i(bc + ad) (8)

These are the exact analogies of what one might expect if
a + ib and ¢ + id were complex numbers. The operations
needed to compute (8) require only four multiplications and
two additions in GF(3™).

V. Complex Multiplication Defined Over the
Direct Sum of Two Copies of GF(q™)

Let GF(g™) be a finite field. Further, let (-1) denote the
negative of the real integer one and let / be the solution of
equation x2 = ~1. Finally, define the set qu [i[] = {fa+ib |
a, b € GF(g™)}of g?™ elements in such a manner that addi-
tion is given by (¢ + ib) +(c +id)=(a + c¢) + i(c + d) and multi-
plication is given by (a + ib) (¢ + id) = (ac - bd) + i(bc + ad),
where gc - bd and bc + ad are elements in GF(g™).

Theorem 4. If -1 is a quadratic residue in GF(g™), then
the set qu [7] is a commutative ring and is not a field.

Proof: It is not difficult to show that any arbitrary elements
such as u, v, and w of Z  [7] satisfy the six postulates of a
ring [6, page 1]. Thus qu [#] is a commutative ring.

To prove that qu [i] is not a finite field, it is necessary to
show that its nonzero elements do not form a group under
multiplication [7, page 126]. To show this, assume there

exists an inverse element w~! of an arbitrary element w=a +
ip equ [7] such that ww=! = 1. Then,

N

a-~if
— = (9
a+if a2<1 +(g)2)

Since -1 is a quadratic residue in GF(g™), there exist two
solutions s of x2 + 1 = 0in GF(g™). Let w = o + iB have the
property that s = B/a. Then the denominator of Eq.(9) is
equal to zero. This implies that no inverse w=! of w exists
in qu [{]. Thus, qu {7] is not a field.

Now suppose that #x are the solutions of x2 + 1 = 0 in
GF(g™). 1fa+ib equ [7].then let ¢ be the mapping

¢:a+ib—>((@a+sh),(@a-sb)) = (v.7) (10)

where v = (a + sb), Y= (a - sb) and v, ¥ € GF(g™). With the
same procedure that was used in the proof of Theorem 1 in
[8], it can be shown that the mapping in (10) is an isomorphic
mapping. Also, it can be demonstrated that the set S ,, =
{(a, @) € GF(g™)}is the direct sum of two copies of GF(qq”’),
and that Sqm is isomorphic to the ring Zq,,, [i].

The inverse mapping ¢! which maps (a, @) € S,m into
Zm [7] is defined by

o7 (v, Y)>a+ib (11)

To find @ and & in (11), note that (10) implies

a+sb=vymodg (12a)
a-sb=Ymodg (12b)
Summing (12a) and (12b) yields
22=(y+7Y)mod q (12¢)
Subtracting (12b) from (12a) yields
2sb =(y -v) mod g (12d)

Since the quantities 2 and 2s are two nonzero elements in
GF(g™), the inverse elements of these two elements exist in
GF(q™). Thus,

a=2""(y+7)modg (13a)
and

b=(2s) (y-¥)mod g (13b)
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Consider in the next section complex multiplications over the
special finite rings qu [{], where g =3 and 5.

A. Complex Multiplication Over the Ring Zam 1)
Where m is Even

Consider the finite field GF(3™) where m is even, ie.,
m = 2n. By Theorem 2, one obtains (-1/3") = 1. Thus, -1 is
a quadratic residue in GF(3™). Hence elements %s exist in
GF(3™) which are solutions of p(x) = x2 + 1 = 0. To find
these roots, note from (1) that

3B-1)
-1 _ >
CREEES

Thus, -1 is a quadratic nonresidue modulo 3,and x2 + 1 =0 is
not solvable in the ground field GF(3). A root, say s, of the
quadratic polynomial equation, p(x) = x? + 1 = 0 exists and
can be found in the extension field GF(3). To show this, let
a be a primitive element in GF(3™), where m = 0 mod 2.
Then

o¥" -1 =1 mod 3 (14)

Since 4 | 3™ -1 for m =0 mod 2, Eq. (14) becomes

31 3M-1\)2
e« 2 = \fa ¢ =-1mod 3 (15)

or s2 + 1 =0 mod 3 where s = 2ta3”-1)4 ¢ GF(3™). Evidently,
(s, =s) are the roots of the polynomial p(x) = x2 + 1 =0 over
the Galois field GF(3") where m =0 mod 2.

Let s = za@®™-D/4 Also let the set Zyp, [i] = {a + ib |
a. b € GF(3™)} be a ring of 32m elements where 2 = -1,
Assume the mapping and its inverse mapping are defined by

¢:(a+ib) - ((a + sb). (o - sb)) (162)
and
¢~ (v, 1)~ (@t ib) (16b)
where g and b are computed by
a=2""(y+y)=2(y +y)mod 3 (172)
b=(2s) " (y-7y)mod 3 (17b)

Then, by Theorem 1 in [8] the ring Zym [i] is isomorphic to
the direct sum of two copies of GF(3™) which is defined by
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Sym = (MY, 7 e GFG3™)} (18)
where (v, ¥) + (8, 8) = (v + 8,7 + B) and (v, 7) (8. B) = (¥8, 7B).

From (16) and (17), the arithmetic needed to compute the
mapping ¢ and its inverse ¢! require three multiplications,
one multiplication by 2 and four additions in GF(3"). The
operations needed to perform a complex multiplication in S,
in (18) require only two multiplications in GF(3™).

Example 1: Let GF(32) be a finite field and o be a primi-
tive element in GF(32). Also let 4 = 3 +jaand B=a? +
ia5, where o3, o, a4, a8 e GF(32). Calculate the product of
A and B by using a complex multiplication over the direct
sum of two copies of GF(32).

Since b(x) = x2 + x + 2 is a primitive irreducible polyno-
mial over GF(3), then the nonzero elements of GF(32) are as
follows: @, a2 = —a -2, a3 =—a +2,a% =2, a5 =2a,ab =
2a-1.a”7 =a+1,and a8 = 1. From (15), s = +a(32-1)/4 =
+a? are the solutions of p(x) = x2 + 1 = 0, where *a? ¢
GF(32). From (16a) and (16b). one obtains

A = +ia—> (a3 +a*a,¢® -a’a) = (7,0)

and

i

B = o® +ia® - (@* +a?a®,a® - a?a®) = (a,0?)

The multiplication over Z,, [i] is (a7, 0) (¢, a2) = (1,0).
From (17a) and (17b), one obtains a = 2(1 + 0) mod 3 = o*
and b = (2a2)"1(1 -0)mod 3=a%. Hence AB=a+ib=04+
ia?. This result can be verified readily by a direct computation.

B. Complex Multiplication Over the Ring 25,,,[0']

Consider the finite field GF(5). By Theorem 2, one
obtains (-1/57)=1.Thus, -1 is a quadratic residue in GF(5™).
Hence elements *s exist as the roots of p(x) = x2 +1 =0 1in
GF(5™). To find the roots, it is not difficult to show that -1
is a quadratic residue modulo 5 and x2 + 1 = 0 is solvable in
the ground field GF(5). Since (x¥2)? + 1 =0 mod 5, then ele-
ments s = +2 exist as the roots of p(x) =x2 +1=0 in GF(5).

Let the set Z,,, [i] = {a+ib | a,b € GF(5™)} be a ring of
52m elements, where i2 = -1. Also let s = 2. Assume the
mapping and its inverse mapping are defined by

®: (e +ib) > ((@+2b), (a - 2b)) = (8, 6) (19a)

&1 (8.8 > (a+ib) (19b)



where g and b are computed by

a=2Yy-y)=-2(y+y)mod 5 (20a)

and

b=22(y-y)mod 5 (20b)

Then the ring Z,, [7] is isomorphic to the direct sum of two
copies of GF(5™) which is defined by

Sm = {(r-M17,7 e GF(5™)} (1)

where (v,7)+ (8,8) = (v +8, ¥+ B) and (v, 7) (8, B) = (8. 7B).

By (19) and (20), the arithmetic needed to compute the

mapping ® and its inverse ®~! requires three multiplications
by powers of two and four additions in GF(5™). By (21), the
arithmetic needed to compute a complex multiplication over
Ssm requires only two multiplications in GF(5™).
Example 2: Let GF(52) be a finite field and a be a primi-
tive element in GF(52). Also let A = (a!? + ja) and B = (10 +
ia?), where a!2, a, @19, and a? € GF(52). Calculate the pro-
duct of A and B by using a complex multiplication over the
direct sum of two copies of GF(52).

Since b(x) = x2 + 2x + 3 is a primitive irreducible polyno-
mial over GF(5), then the nonzero elements of GF(52) are as
follows: o, @2 = 2a+2, 03 =a+ ], 0% == +2, a5 =-a-2,
ab = 2 a7 = Da,a8 = a+1,09=3a-2,a® =20+ 1,
all =20 -1, a2 =-1, a3 =, 0¥ =20 -2, 0¥ =—a-1,
ab =g -2 al”"=a+2, al8=2 a¥=2a,a®¥=qa-1,02 =
Bat2,02=20-1,a8 =2a+1,and a?* =].

In GF(52), s = *2 are the solutions of x2 + 1 = 0. From
(19a), one obtains

A = (@2 +ia)~> (a!? + 2a,a!? - 20) = (all, a??)
and
B = (alo + iaZ)_)(alO + 202,(110 _ 2(12) - (a7’a17)
The multiplication over Z, [i] is
@",a2) @, al) = ('8, o)

From (20a) and (20b), one obtains

a=-2® +a'S)mod 5 = o

and
b=22@"® -a®%)mod 5 = o*

Hence AB = a + ib = a!* + ja%. This result can be verified
readily by a direct computation.

VI. Implementation of Complex
Multiplications

Let GF(q™) be a finite field. GF(g™) can be generated by
any irreducible polynomial of degree m over GF(g) [3].
However, for mathematical convenience it is more desirable
to generate GF(q™) using a primitive irreducible polynomial.

An algorithm to find a primitive irreducible polynomial
of degree m over GF(q) is given as follows:

(1) Construct an irreducible polynomial g(x) of degree m
over GF(q) via the method proposed in [3]. The
existence of such a polynomial is guaranteed, and there
are

m

,—,11 > ud)a?

i=d,d\m

such polynomials, where u(d) is the Moebius function.
(2) Generate the field GF(g™) using g(x).
(3) Find a primitive element 8in GF(g™) using Theorem 3.

(4) Construct a primitive irreducible polynomial &(x) via
the following formula:

b(x) = x-B)(x-p7)- - (x-p7" )

The primitive irreducible polynomial 4(x) so obtained can be
used to generate the field GF(g™).

Let the set Z ,, [i] = {a + ibla,b e GF(q")} be a set of
g2m elements w‘flere i? = 1. It is shown in the above sec-
tions that if (-1/g™) = -1, qu [£] is a field. Also if (-1/g™) =
+1, qu [7] is a ring. Let vy = ¢ + ib and § = ¢ + id be two
elements in Z ,, [i]. Let § = x + iy denote the product of vy
and . A complex multiplication of v and § is defined to
be § =8 =(a +ib) (c +id)=x + iy where x = ac - bd and
y=ad +bc.

It was shown in the above sections that complex multi-
plications over the ring Z , [/] can be more efficiently done
in the transform domain S ,, = {(y, Y)|v, ¥ € GF(g™)}. The
flowchart of an algorithm for the multiplication over the ring
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qu [i] is given in Fig. 1. This algorithm has been verified by complex rings. The above new multiplication algorithm
a software simulation.

VIl. Conclusion

In this article, the Babylonian multiplication algorithm ment of coding systems based on the fields GF(32™) and
using tables of squares is applied to special finite fields and ~ GF(52™).
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(1]
(2]
(3]

[4]

(5]

6]
(7]
(8]

has been verified both by examples and simulation programs.
The computationally architectural designs for the Babylo-
nian multiplication over the finite field or ring are both simple
and regular and suitable for a VLSI realization. Finally, this
new multiplication algorithm can be applied to the develop-
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CONSTRUCTION OF A FINITE FIELD GF{(q™).

CONVERSION OF a+ ib AND ¢ + id INTO {y, 7} AND (G, f) BY THE MAPPING ¢ DEFINED IN (16a).

o

COMPUTATION OF (5. 3) = (v, 7) (8. B) = (v8, 7B)

|

INVERSE CONVERSION OF (5, 8) INTO x + iy BY THE INVERSE MAPPING ¢_1 DEFINED IN {16b).

Fig. 1. A flowchart of implementing a complex multiplication over the ring Z

q,,,[l'l
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Appendix
Proof of Theorem 2

First, one has q’"z—l = qm-2(q +1)+---+(g+1)mod?2,
qmz-l =((I;l)(qm«1+qm—2+___+q+1) for m =0 mod 2
Omod 2 forg=1 mod 4 and
= (gml4gm24.. . +g+1mod2 q_'"z—_l = gMm2(@g+1)+---+q(@+1)+1mod?2,
forg =3 mod 4
(A-1) form=1mod 2

Thus, if ¢ = 1 mod 4, then (2) becomes
From (3), one has

;I_E(_])OmOdZ =]

qm (_1) qm-1 1 for ¢ =3 mod 4 and m =0 mod 2
.\ = (_1) 2 =
m

q -1 forg=3 mod 4and m=1 mod 2

If g =3 mod 4, theng + 1 =0 mod 4. Then (2) becomes
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